Splash! into Angles - Elementary (Grades 4-5)

$\left.\left.\begin{array}{|l|l|}\hline \text { Introduction } & \begin{array}{l}\text { In these activities, students will explore the data that they gathered with Splash! } \\ \text { and apply it to various mathematical tasks. } \\ 1-2 \text { class periods }\end{array} \\ \hline \text { Time } & 4-5 \\ \hline \text { Lrade } & \begin{array}{l}\text { Students will have visited the Tsongas Industrial History Center to participate in } \\ \text { the Power to Production program. Students gathered data from the waterwheel } \\ \text { test on the Splash! app. }\end{array} \\ \hline \text { Vreparation } \\ \text { Vacabulary } & \begin{array}{l}\text { Engles worksheet. For each group, you will need a large sheet of paper to be used } \\ \text { for idea sharing and to be displayed for the gallery walk. }\end{array} \\ \hline \begin{array}{l}\text { Anticipated } \\ \text { Student } \\ \text { Preconceptions/ } \\ \text { Misconceptions }\end{array} & \begin{array}{l}\text { Acute Angle } \\ \text { Obtuse Angle } \\ \text { Right Angle }\end{array} \\ \hline \text { Frameworks } & \begin{array}{l}\text { Students will know how to measure angles, but may need to review measuring } \\ \text { with a protractor. Students may think that there is no way an angle can be }\end{array} \\ \text { measured if one side is on a curved surface. }\end{array} \right\rvert\, \begin{array}{l}\text { Massachusetts Math Standards } \\ \text { 4MD. Geometric measurement: Understand concepts of angle and measure angles. } \\ \text { Recognize angles as geometric shapes that are formed wherever two rays } \\ \text { share a common endpoint, and understand concepts of angle measurement: } \\ \text { a. An angle is measured with reference to a circle with its center at the } \\ \text { common endpoint of the rays, by considering the fraction of the } \\ \text { circular arc between the points where the two rays intersect the circle. } \\ \text { An angle that turns through 1/360 of a circle is called a "one-degree } \\ \text { angle," and can be used to measure angles. } \\ \text { b. An angle that turns through } n \text { one-degree angles is said to have an } \\ \text { angle measure of } n \text { degrees. } \\ \text { Measure angles in whole-number degrees using a protractor. Sketch angles } \\ \text { of specified measure. } \\ \text { Recognize angle measure as additive. When an angle is decomposed into } \\ \text { non-overlapping parts, the angle measure of the whole is the sum of the } \\ \text { angle measures of the parts. Solve addition and subtraction problems to } \\ \text { find unknown angles on a diagram in real-world and mathematical } \\ \text { problems, e.g., by using an equation with a symbol for the unknown angle } \\ \text { measure. }\end{array}\right\}$

Guiding	How do the angles of a waterwheel's blades make the wheel more or less efficient?
Objectives	Students will be able to: - - Measure angles on a curved surface when a tangent line is drawn. Describe how using different angle measures in a waterwheel design might contribute to efficiency of a waterwheel.
Activity	1. Organize students into groups of three to four students. 2. Hand out waterwheel image.
3. Students will measure angles A and B (red bucket wheel) and C and D (blue	
paddle wheel) using a protractor. Students will classify the angles as acute,	
obtuse, or right by their measures.	
4.Show students the Splash! data and the wheel/base combination they selected as most efficient. Ask the students what they notice about the relationship between the angles on the red wheel (bucket) and the choices they made.	
5. Ask students to sketch other blade angles on the worksheet, using their	
protractor and different colored pencils. They should draw at least 6 blades	
on each wheel.	

Splash! into Angles Worksheet

Draw a wheel with at least 6 blades that are....

Acute
Angles

Right
Angles

Obtuse
Angles

